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First, Second, and Third Order Finite-Volume Schemes
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In this paper, we present implicit first-, second-, and third-order finite-volume schemes for
advection-diffusion problems based on the method of hyperbolic systems. In particular, we
demonstrate that the construction of an uniformly accurate third-order advection-diffusion
scheme is made trivial by the hyperbolic method while a naive construction of adding a
third-order diffusion scheme to a third-order advection scheme can fail to yield third-order
accuracy. We demonstrate also that the gradients are computed simultaneously to the same
order of accuracy as that of the solution variable on irregular triangular grids: first, second
and third order accurate gradients by the developed first, second, and third order schemes,
respectively. Furthermore, the first and second order schemes are shown to achieve one order
higher accuracy for the solution variable in the advection limit.

I. Introduction

This paper is a sequel to the paper1 presented at 51st AIAA Aerospace Sciences Meeting held in January
2013. In the previous paper, we presented the construction of first, second, and third order diffusion schemes
by the method introduced in Ref.2. In this method, diffusion schemes are constructed from advection schemes
via an equivalent hyperbolic system. We demonstrated that first, second, and third order diffusion schemes
constructed by the upwind flux yield first, second, and third order accurate solution and gradients, respectively,
on irregular triangular grids, with orders-of-magnitude acceleration in convergence over a traditional scheme. In
particular, the third-order diffusion scheme was shown to be incomparably more accurate and efficient, providing
third-order accuracy in the solution as well as in the gradients nearly at the cost of the second-order edge-based
finite-volume scheme.

Towards the goal of developing a robust, accurate, and efficient three-dimensional viscous solver capable
of producing high accurate derivatives (e.g, viscous stresses, heat fluxes, and vorticity) on unstructured grids,
we now consider the advection-diffusion equation. The main focus of the paper is on the uniform third-order
accuracy from the advection limit to the diffusion limit. The third-order scheme considered in the current study
belongs to the class of numerical schemes based on vanishing residuals.3,4,5 The second-order error term contains
the residual that vanishes in the steady state; the leading error is then upgraded to third order. This type of
scheme is known to deliver high-order accuracy on a relatively compact stencil (e.g., third-order accuracy on a
second-order stencil), and thus very attractive for practical computations where high accuracy is demanded at
a minimal additional cost. Successful applications of these schemes to the advection-diffusion equation require
a careful construction to ensure the property of vanishing residuals. If not designed properly, the scheme loses
the design accuracy at least by one order as shown in Ref.4 for a similar high-order scheme, and in Ref.6 for
conservation laws with source terms. To achieve third-order accuracy for the advection-diffusion equation, the
advective and diffusive terms must be discretized not only to third order but also in a compatible manner, and
it is not trivial.

A radical approach to ensure the uniform accuracy is to integrate the advective and diffusive terms into
a single hyperbolic system as proposed in Ref.7. In this approach, the accuracy degradation cannot occur
because there is only a single hyperbolic system. In this paper, towards the extension to the compressible
Navier-Stokes equations for which the full integration of the inviscid term and the viscous term remains a
challenge, we consider a simplified approach. We construct a third-order advection-diffusion scheme as a sum of
a third-order advection scheme and a third-order hyperbolic diffusion scheme developed in the previous paper.1
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Such an approach often fails for conventional methods, but it works trivially for the diffusion scheme based on
the hyperbolic diffusion system because both advective and diffusive terms are discretized by the same scheme.
This approach is directly applicable to the compressible Navier-Stokes equations because the viscous terms can
be written alone as a single hyperbolic system and the eigen-structure can be fully analyzed as shown in Ref.8.

The paper begins with the hyperbolic formulation for the advection-diffusion system, describes implicit
first, second, and third order node-centered edge-based finite-volume schemes, presents numerical results and
discussion, and concludes with remarks.

II. Hyperbolic Advection-Diffusion System

Consider the advection-diffusion equation in two dimensions:

∂tu+ a ∂xu+ b ∂yu = ν (∂xxu+ ∂yyu), (II.1)

where u is the solution variable, (a, b) is a constant advection vector, and ν is a constant diffusion coefficient.
Construction of numerical schemes for the advective term is relatively straightforward, but the same is not
necessarily true for the diffusive term of second derivatives, especially for high-order methods and unstructured
grids. A radical approach to diffusion is to convert the diffusive term into a hyperbolic system,1 which is
extended to the advection-diffusion in the following form:

∂tu+ a ∂xu+ b ∂yu = ν (∂xp+ ∂yq),

∂tp = (∂xu− p)/Tr,

∂tq = (∂yu− q)/Tr,

(II.2)

where p and q are called the gradient variables which relax to the solution derivatives, ∂xu and ∂yu, respectively,
in the steady state, and Tr is a free parameter called the relaxation time. The system is equivalent to the
advection-diffusion equation (II.1) in the steady state for any Tr. Therefore, the steady solution to the advection-
diffusion equation (II.1) can be computed by solving the first-order system. Discretization is made simple
because there are no second derivatives and the system is hyperbolic7 for which a variety of well established
techniques are available. The hyperbolic system here designed specifically for steady computations is simply
called the hyperbolic advection-diffusion system. Time-accurate computations are possible by implicit time
stepping schemes, but it is beyond the scope of the present paper. This formulation clearly shows that the method
is different from other relaxation models.9,10 Our method introduces relaxation only on the diffusive fluxes,
and our target equation is exactly the advection-diffusion equation (II.1), not an asymptotic approximation.
Also, our target applications are second- or higher-order partial differential equations, such as the Navier-Stokes
equations, not specific to rarefied gas dynamics or radiation hydrodynamics. Furthermore, the relaxation is
not stiff at all because Tr is a free parameter and does not have to be small. The method recovers the target
equation exactly in the steady state for any finite Tr.

Write the system in the vector form,

∂tU+ ∂xF+ ∂yG = S, (II.3)

where

U =


u

p

q

 , F =


au− νp

−u/Tr

0

 , G =


bu− νq

0

−u/Tr

 , S =


0

−p/Tr

−q/Tr

 . (II.4)

In Ref.7, the system is taken as a single hyperbolic system. In this paper, we consider the advective term and
the diffusive term separately.

F = Fa + Fd =


au

0

0

+


−νp

−u/Tr

0

 , G = Ga +Gd =


bu

0

0

+


−νq

0

−u/Tr

 . (II.5)
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The flux Jacobian projected along an arbitrary vector, n = (nx, ny) is given by

An =
∂F

∂U
nx +

∂G

∂U
ny = Aa

n +Ad
n, (II.6)

where Aa
n and Ad

n are the advective and diffusive Jacobians, respectively,

Aa
n =

∂Fa

∂U
nx +

∂Ga

∂U
ny =


an 0 0

0 0 0

0 0 0

 , Ad
n =

∂Fd

∂U
nx +

∂Gd

∂U
ny =


0 −νnx −νny

−nx/Tr 0 0

−ny/Tr 0 0

 , (II.7)

and an = anx+bny. The advective Jacobian has the eigenvalue, an, and the diffusive Jacobian has the following
eigenvalues:

λ = ±
√

ν

Tr
, 0. (II.8)

The zero eigenvalue corresponds to the inconsistency damping mode,2 acting on the components of p and q such
that qx − py ̸= 0. It can be made nonzero by the fully hyperbolic formulation introduced in Ref.1, which we
shall employ in this study for constructing a third-order scheme. We treat the diffusive part independently and
thus define the relaxation time as suggested for pure diffusion in the previous paper:

Tr =
L2
r

ν
, Lr =

1

2π
. (II.9)

With the purely diffusive relaxation time, the system reduces to the scalar advection equation in the advection
limit, ν → 0:

∂tu+ a ∂xu+ b ∂yu = 0,

∂tp = 0,

∂tq = 0,

(II.10)

whereas Tr considered in Ref.7 generates a coupled system. The decoupling is suitable for modeling the hy-
perbolic Navier-Stokes system8 where the viscous stresses and heat fluxes are taken as the gradient variables,
which are not physically coupled with the inviscid terms. In the inviscid limit, the hyperbolic Navier-Stokes
system proposed in Ref.8 reduces exactly to the Euler equations. Also, the separate treatment of the inviscid
and viscous terms dramatically simplifies the construction of numerical schemes because it only requires the
eigen-structure of each term, which can be fully analyzed independently. In other words, the inviscid scheme
can be chosen independently from the choice of the hyperbolic viscous scheme. This simplified approach was
first considered for the hyperbolic Navier-Stokes system in Ref.8, but not studied for the model equation before.
This paper only considers the linear model equation, but the method can be extended to nonlinear equations
by the local-preconditioning formulation proposed in Ref.8.

III. Node-Centered Edge-Based Finite-Volume Scheme

III.A. Discretization

The node-centered edge-based finite-volume scheme for Equation (II.3) is given by

Vj
dUj

dt
= −

∑
k∈{kj}

ΦjkAjk + SjVj , (III.1)

where Vj is the measure of the dual control volume around node j in the set {J} of nodes, {kj} is a set of neighbors
of j, Φjk is a numerical flux, and Ajk is the magnitude of the directed area vector, i.e., Ajk = |njk| = |nℓ

jk+nr
jk|

(see Figure 1). This formulation is valid for triangular, quadrilateral, or mixed grids, and all schemes developed
below can be directly applied to any grid except the third-order scheme, which is third-order accurate only
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on triangular grids. For the third-order scheme, the point-source integration in Equation (III.1) cannot be
employed; it needs to be discretized carefully to preserve the accuracy as will be discussed later. Note also
that an appropriate boundary flux must be supplied at the boundary node. For first-order schemes, a point
evaluation is sufficiently accurate, but for second-order schemes, a different quadrature is required for the linear
exactness in the flux integration. See Ref.11 for a comprehensive list of linearity preserving boundary quadrature
formulas.

III.B. Numerical Flux

The numerical flux is computed by the upwind flux:

Φjk =
1

2
(HL +HR) · n̂jk − 1

2
|An|(UR −UL), (III.2)

where HL = [FL,GL], HR = [FR,GR], and n̂jk = (nx, ny) is the unit directed area vector. The left and right
fluxes and solutions are defined at the edge midpoint and evaluated by the nodal values for first-order accuracy
and by the linear extrapolation from the nodes for second/third-order accuracy. The absolute Jacobian, |An|,
requires the full eigen-structure of the target system. The eigen-structure of the hyperbolic advection-diffusion
system (II.3) is simple enough to enable the construction of the upwind flux.7 In this paper, however, we
consider a simplified construction, which was proposed for the hyperbolic Navier-Stokes scheme in Ref.8. In this
approach, the numerical flux is defined by the sum of the upwind advection flux and the upwind hyperbolic-
diffusion flux, which can be written as

Φjk =
1

2
(HL +HR) · n̂jk − 1

2

(
|Aa

n|+ |Ad
n|
)
(UR −UL), (III.3)

where

|Aa
n| =


|an| 0 0

0 0 0

0 0 0

 , |Ad
n| =

ν

Lr


1 0 0

0 n2
x nxny

0 nxny n2
y

 . (III.4)

In this way, each absolute Jacobian can be constructed independently for the advective term and the diffusive
term. It has been successfully applied to the hyperbolic Navier-Stokes system:8 the inviscid term and the
viscous terms are both hyperbolic and their eigen-structures can be fully analyzed independently.

III.C. Implicit Solver

A steady-state solution can be obtained by marching in time towards the steady state as demonstrated in
the previous paper.1 In this paper, we drop the time derivative term,

0 = −
∑

k∈{kj}

ΦjkAjk + SjVj , (III.5)

and construct an implicit solver for the global system of steady residual equations. The advantage of O(1/h)
acceleration in the steady convergence over traditional methods, which has been observed for explicit time-
marching schemes,2,7,8, 1 now comes in the iterative convergence of the linear system arising from the implicit
formulation as will be demonstrated later.

Consider the global system of residual equations, which consists of rows of the nodal residual (III.5):

0 = Res(Uh), (III.6)

where Uh denotes the global solution vector for which the system is to be solved. We consider the iterative
method in the form:

Un+1
h = Un

h +∆Uh, (III.7)

where the correction ∆Uh is the solution to the following linear system:

∂Res

∂Uh
∆Uh = −Res(Un

h). (III.8)

4 of 17

American Institute of Aeronautics and Astronautics



To be presented at the 21st AIAA Computational Fluid Dynamics Conference in June 24, 2013.

The Jacobian matrix is constructed by differentiating the residual of the first-order scheme for all schemes.
Therefore, the method is Newton’s method (exact for linear problems) for the first-order scheme, and a defect
correction method for the second and third order schemes, provided the linear system is fully solved. In practice,
we do not fully solve but relax the linear system. In this work, we employ the sequential Gauss-Seidel (GS)
relaxation to relax the linear system to a specified tolerance. It is possible to add a pseudo-time term to the
left hand side, but it is not used in this work. It is emphasized that the condition number of the Jacobian is
O(1/h), not O(1/h2) even in the diffusion limit, implying O(1/h) acceleration in convergence over traditional
schemes for diffusion dominated problems.

III.D. First-Order Scheme

The simplest way to construct a first-order scheme is to evaluate the left and right states by the nodal
solutions:

UL = Uj , UR = Uk, (III.9)

and the numerical flux by the upwind flux (III.3). The resulting scheme corresponds to Scheme I in Ref.1. In
this paper, we employ a modified version of Scheme I called Scheme II where the gradient variables are used to
enable the linear extrapolation of the solution:

uL = uj +
1

2
(pj , qj) ·∆ljk, uR = uk − 1

2
(pk, qk) ·∆ljk, (III.10)

where ∆ljk = (xk − xj , yk − yj). The scheme remains compact and first-order accurate in the diffusion limit
as shown in the previous paper.1 The Jacobian is constructed exactly based on this scheme. In this paper, we
demonstrate that the scheme can achieve second-order accuracy in the advection limit.

III.E. Second-Order Scheme

For second-order accuracy, we compute the nodal gradient by a linear least-squares (LSQ) method, and
evaluate the left and right states by the linear extrapolation from the nodes. Again, we employ Scheme II and
avoid the gradient computation for the solution by using (p, q) as in Equation (III.10). The gradient computation
is required only for p and q to perform the linear extrapolation:

pL = pj +
1

2
∇pj ·∆ljk, pR = pk − 1

2
∇pk ·∆ljk, (III.11)

qL = qj +
1

2
∇qj ·∆ljk, qR = qk − 1

2
∇qk ·∆ljk, (III.12)

where ∇pj is the gradient of p computed by the LSQ method at j, and similarly for ∇qj . The numerical flux is
computed by the upwind flux (III.3). This scheme is known to be second-order accurate for both the solution
and the gradients in the diffusion limit.1 On the other hand, the scheme produces third-order accurate solutions
in the advection limit as shown later.

III.F. Third-Order Scheme

As in the previous work, we consider the third-order edge-based finite-volume scheme discovered by Katz
and Sankaran.12 It is a very special node-centered scheme for hyperbolic conservation laws: the second-order
node-centered edge-based finite-volume scheme achieves third-order accuracy on triangular grids if the nodal
gradients are exact for quadratic functions and the flux is linearly extrapolated to the edge-midpoint in the case
of nonlinear fluxes. The third-order accuracy has been demonstrated for regular as well as irregular triangular
grids in Refs.12, 13, 14. It is a very economical third-order scheme: third-order accuracy obtained nearly at
the cost of the second-order edge-based finite-volume scheme. Nevertheless, its extensions to other types of
equations including source terms are not straightforward. As the scheme relies on the second-order error term
that vanishes in the steady state, every term in a target equation must be discretized with a compatible second-
order error term. For source terms, a systematic method to ensure the compatible discretizaton has been
devised in Ref.6. For the diffusive term in the original form (II.1), a compatible third-order scheme has yet to
be discovered to the author’s knowledge. In this section, we first illustrate the compatibility problem for the
advection-diffusion equation, and then present the hyperbolic construction as a radically simple way to avoid
the problem.
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III.F.1. Third-Order Accuracy for Advection-Diffusion

Consider the advection-diffusion equation,

∂xf + ∂yg = ν (∂xxu+ ∂yyu), (III.13)

where (f, g) = (au, bu). In the absence of the diffusive term (e.g., ν = 0), the third-order scheme has the
following local truncation error at node j on a regular triangular grid:6

T adv
j = C1 ∂xx(∂xf + ∂yg) + C2 ∂xy(∂xf + ∂yg) + C3 ∂yy(∂xf + ∂yg) +O(h3), (III.14)

where the derivatives are defined at j, h is a typical mesh spacing, and the coefficients, C1, C2, and C3, are
geometrical constants of O(h2). Without loss of generality, we focus on a regular triangular grid composed of
isosceles right triangles of spacing h where the truncation error is specifically given by

T adv
j =

h2

12
[∂xx(∂xf + ∂yg) + ∂xy(∂xf + ∂yg) + ∂yy(∂xf + ∂yg)] +O(h3). (III.15)

The second-order error term will vanish because ∂xf + ∂yg = 0 for the exact solution or equivalently because
∂xf + ∂yg = 0 in the steady state, and thus the truncation error is upgraded to third-order. Consequently, the
discretization error is expected to be third-order. In order to achieve third order accuracy for the advection-
diffusion equation, the diffusion scheme must have a second-order error term in the form:

T diff
j = −h2

12
[∂xx(ν (∂xxu+ ∂yyu)) + ∂xy(ν (∂xxu+ ∂yyu)) + ∂yy(ν (∂xxu+ ∂yyu))] +O(h3), (III.16)

so that

T adv-diff
j = T adv

j + T diff
j =

h2

12
[∂xxr + ∂xyr + ∂yyr] +O(h3), (III.17)

where

r = ∂xf + ∂yg − ν (∂xxu+ ∂yyu), (III.18)

and thereby the second-order error term vanishes for r = 0, i.e., in the steady state. We emphasize that there
are two requirements for constructing a uniformly third-order advection-diffusion scheme. First, the diffusion
scheme must have a second-order error term that vanishes in the steady state. Second, the second order error
must be in the form compatible with that of the advection scheme.

The linear Galerkin scheme (i.e., the continuous P1 Galerkin scheme), which is equivalent to the three-point
central finite-difference scheme on the grid considered here,15 has a second-order error term,

T diff
j =

νh2

12
(∂xxxxu+ ∂yyyyu) +O(h3), (III.19)

which does not vanish in the steady state, leading to

T adv-diff
j = T adv

j + T diff
j

=
h2

12
[∂xx(∂xf + ∂yg + ν∂xxu) + ∂xy(∂xf + ∂yg) + ∂yy(∂xf + ∂yg + ν∂yyu)] +O(h3).

Clearly, the second-order error term does not vanish. This scheme is, therefore, second-order accurate, and can
be third-order accurate only in the advection limit (ν → 0). Without exploring various other diffusion schemes
or seeking a general guiding principle, we took a third-order version of the linear Galerkin scheme described
in Refs.16, 17, which is obtained by upgrading the element-gradient by a curvature correction. The curvature
correction term is computed from the gradients reconstructed at nodes. See Ref.16 for details. Note that this
third-order Galerkin scheme is a corrected linear Galerkin scheme, not a discontinuous Galerkin scheme nor the
continuous P2 Galerkin scheme.16 This scheme has the following truncation error,18

T diff
j =

h2

12
[∂xx(ν (∂xxu+ ∂yyu)) + ∂xy(ν (∂xxu+ ∂yyu)) + ∂yy(ν (∂xxu+ ∂yyu))] +O(h3), (III.20)
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and thus it is third-order accurate in the steady state where ν (∂xxu + ∂yyu) = 0. However, the sum of the
third-order advection scheme and the third-order Galerkin scheme has the following truncation error:

T adv-diff
j = T adv

j + T diff
j =

h2

12
[∂xxr

′ + ∂xyr
′ + ∂yyr

′] +O(h3), (III.21)

where

r′ = ∂xf + ∂yg + ν (∂xxu+ ∂yyu). (III.22)

We immediately notice that the diffusive term in r′ has a wrong sign, and therefore the second-order term does
not vanish in the steady state where r = 0 but r′ ̸= 0. The scheme is only second-order accurate except in
the advection limit or in the diffusion limit, i.e., not uniformly third-order accurate. This is the compatibility
problem stated as the second requirement above. A similar discussion can be found in Ref.4, which pertains to
second- and high-order residual-distribution schemes.

There is a possibility that the edge-based diffusion scheme in Refs.11,19 can also achieve third-order accuracy
with a vanishing second-order error term. However, it may require a cubic fit rather than a quadratic fit for
gradient reconstruction, and even if it is third-order accurate, it may not be compatible with the third-order
advection scheme. Moreover, even if a compatible third-order diffusion scheme is found for regular grids, the same
property is not necessarily guaranteed on irregular grids. While the search continues for a compatible third-order
diffusion scheme, we show in the next section that the construction of uniformly third-order advection-diffusion
schemes is trivial in the hyperbolic method. The compatibility problem does not exist because all terms are
made hyperbolic and can be discretized in exactly the same way, thus yielding a fully compatible second-order
error term.

III.F.2. Hyperbolic Formulation for Uniform Accuracy

The construction of the third-order advection-diffusion scheme is made trivial by the fully hyperbolic for-
mulation:1

∂tU+ ∂xF+ ∂yG = 0, (III.23)

where

F = Fa + Fd + Fs =


au

0

0

+


−νp

−u/Tr

0

+


0

(y − yj) q/Tr

−(x− xj) q/Tr

 , (III.24)

G = Ga +Gd +Gs =


bu

0

0

+


−νq

0

−u/Tr

+


0

−(y − yj) p/Tr

(x− xj) p/Tr

 , (III.25)

where (xj , yj) denotes the location of a node at which the system is discretized. Each part is hyperbolic and
can be discretized by the same third-order upwind scheme. The numerical flux is constructed simply as a sum
of the upwind advection flux, the upwind hyperbolic-diffusion flux, and the upwind source flux. The resulting
scheme is guaranteed to be uniformly third-order accurate. Expanding the scheme on the regular triangular
grid, we find the truncation error for each equation as

T u
j = − νh

6Lr

[
(
√
2 +

√
5)∂x(p− ∂xu) +

√
2 ∂y(p− ∂xu) +

√
2 ∂x(q − ∂yu) + (

√
2 +

√
5)∂y(q − ∂yu)

]
+

h2

12
[∂xxr + ∂xyr + ∂yyr] +O(h3), (III.26)

T p
j = − h2

6Tr
[(∂xx + ∂xy)(q − ∂yu) + ∂xx(p− ∂xu) + ∂y(∂xq − ∂yp)] +O(h3), (III.27)

T q
j = − h2

6Tr
[(∂xy + ∂yy)(p− ∂xu) + ∂yy(q − ∂yu)− ∂x(∂xq − ∂yp)] +O(h3), (III.28)
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where r = a ∂xu+ b ∂yu− ν(∂xp+ ∂yq). Observe that there are first- and second-order error terms but they all
vanish in the steady state where r = 0, p− ∂xu = 0, q − ∂yu = 0, and ∂xq − ∂yp = 0. The most critical term is
the second-order error term in the first equation, which vanishes in the steady state for the advection-diffusion
equation, meaning that the advective and diffusive terms have been discretized in a perfectly compatible manner.
The scheme is, therefore, uniformly third-order accurate for any set of parameters, (a, b) and ν. We expect it
to be uniformly third-order accurate on unstructured triangular grids also because the third-order accuracy
on unstructured triangular grids has already been demonstrated for hyperbolic systems in Refs.12, 13, 14. In
short, whatever is true about the third-order scheme for hyperbolic systems is true for the fully hyperbolic
advection-diffusion system.

For the third-order scheme, the gradient computation must be exact for quadratic functions, i.e., a quadratic
fit. It requires five neighbors and may extend beyond the edge-connected neighbors in some cases. In the previous
paper,1 we selected 10 neighbors by including neighbors of the edge-connected neighbors as necessary, and stored
the list of 10 neighbors at each node. Here, we avoid carrying information on the neighbors of the neighbors by
implementing the quadratic gradient reconstruction in two steps, where each step is compact, as described in
Appendix. This method involves all neighbors of the edge-connected neighbors. The total number of neighbors
can be as large as 18, and it can be much more than necessary in many cases. A smart selection of a minimal
number of neighbors may be possible, but in this study we employ the two-step method for robustness and
simplicity. It is robust as it has far more neighbors than necessary even at boundary nodes, and simple as it
can be implemented with the list of edge-connected neighbors only.

IV. Numerical Results

We consider the steady advection-diffusion problem in a square domain with the exact solution given by4

u(x, y) = cos(2πη) exp

(
−2π2ν

1 +
√
1 + 4π2ν2

ξ

)
, (IV.1)

where ξ = ax + by, η = bx − ay, and with the Dirichlet boundary condition. The advection vector is set as
(a, b) = (1.23, 0.12) and ν is determined from the parameter Re by

ν =

√
a2 + b2

Re
, (IV.2)

for Re = 10−6, 10−3, 10−2, 10−1, 1, 10, 102, 103, 106. Numerical results are presented for a series of independently
generated eight irregular triangular grids with N nodes, where N =2048, 8192, 18432, 32768, 51200, 73728,
100352, 131072. The coarsest grid is shown in Figure 2. As can be seen, the grid is fully irregular with
random number of neighbors and some vanishingly small volumes. The first, second, and third order hyperbolic
advection-diffusion schemes, designated as SchemeII(1st), SchemeII(2nd), and SchemeII(3rd), are compared
with two traditional schemes. One is the third-order advection scheme with the linear Galerkin scheme, and the
other with the third-order Galerkin scheme considered in Section III.F.1. The former is designated as Galerkin,
and the latter as Galerkin(3rd). These schemes are termed ‘traditional’ because they are scalar schemes directly
solving the advection-diffusion equation (II.1). The implicit iterative method is implemented with the first-
order residual Jacobian for the advective part and the exact linear-Galerkin Jacobian for the diffusive part
for both traditional schemes. For the Galerkin(3rd) scheme, the Jacobian for the diffusive part is, therefore,
approximate. See Table 1 for a summary of discretizations and Jacobians. In all cases, the GS relaxation
is terminated when the residual of the linear system is reduced by two orders of magnitude in the L1 norm.
For gradient reconstruction, the unweighted linear LSQ method is used for SchemeII(2nd), and the two-step
quadratic LSQ method as in Appendix is used for SchemeII(3rd) and the two traditional schemes. In all cases,
the initial solution is set by the exact solution randomly perturbed. Steady convergence is taken to be reached
when the residual in the L1 norm drops by ten orders of magnitude or reaches the machine zero.

Error convergence results are shown in Figures 3 to 10. Only the results for u and p are shown because
the results for q is very similar to those for p. Also, the results for Re = 10−3 are not shown because they
look identical to those for Re = 10−6. For the traditional schemes, p corresponds to the x-component of
the quadratic LSQ gradients. First, it is observed that the Galerkin scheme is second-order accurate in the
solution and first-order accurate in the gradients (even with the quadratic LSQ fit) except in the advection limit
Re = 106 (Figure 10) where the third-order advection scheme dominates and yields third- and second-order
accuracy in the solution and the gradients, respectively. Second, the Galerkin(3rd) scheme gives third-order
accuracy in the solution and second-order accuracy in the gradients in the diffusion dominated cases, but the
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accuracy begins to deteriorate by one order at Re = 1 (Figure 6) and starts recovering third-order accuracy
at Re = 103 (Figure 9). As predicted, therefore, the scheme is not uniformly third-order accurate. On the
other hand, SchemeII(1st), SchemeII(2nd), and SchemeII(3rd) never encounter such accuracy deterioration. As
results show, SchemeII(1st) and SchemeII(2nd) are uniformly first- and second-order accurate, respectively, in
both the solution and the gradients. Observe also that as advection dominates (Re = 103, 106), SchemeII(1st)
and SchemeII(2nd) yield one order higher accuracy in the solution, i.e., second-order and third-order accuracy,
respectively. The second/third-order accuracy is expected because the gradients are computed with first/second-
order accuracy, which is employed in the face-reconstruction for the advection scheme. This way of achieving
second/third-order accuracy for advection is interesting and economical: second-order advection scheme with no
gradient computations, and third-order advection scheme with linear (not quadratic) LSQ gradients. In effect,
the hyperbolic diffusion scheme here plays a single role of providing accurate gradients with the diffusive term
kept negligibly small. Finally, observe that SchemeII(3rd) gives third-order accuracy for both the solution and
the gradients for all values of Re. It is worth emphasizing that the gradients are third-order accurate even in
the advection limit. The third-order scheme is very efficient in terms of the accuracy in the gradients as we
shall discuss next.

Iterative convergence results are presented in Figures 11 to 18. The same legend applies as in the error
convergence plots, and therefore it is not shown. Again, the results for Re = 10−3 are not shown because they
look identical to those for Re = 10−6. In each figure, three plots are shown: total iterations for convergence,
the total number of the GS relaxations, and the total CPU time taken for convergence, all versus 1/h, where
h = 1/

√
N . First, it is observed that the convergence characteristics of the Galerkin(3rd) scheme are nearly

identical to those of the Galerkin scheme. This is an unexpected result because the Jacobian is exact for the
Galerkin scheme but only approximate for the Galerkin(3rd) scheme. The results imply that the Jacobian of
the linear Galekrin scheme behaves like exact for the third-order Galerkin scheme. Second, the number of GS
sweeps increases quadratically as the grid gets finer in the diffusion dominated cases while increases linearly in
the advection dominated cases. It is consistent with the change in the condition number of the Jacobian matrix
from O(1/h2) in the diffusion limit to O(1/h) in the advection limit. In terms of CPU time, as shown in the
right-most plot, the cost of these traditional schemes varies from O(1/h4) or equivalently O(N2) in the diffusion
limit to O(1/h3) or O(N1.5) in the advection limit. On the other hand, the hyperbolic schemes preserve,
for all values of Re, O(N1.5) convergence in the CPU time. This result is a direct consequence of solving
the hyperbolic advection-diffusion system instead of the scalar advection-diffusion quation. In the diffusion
limit, the hyperbolic schemes are, therefore, O(1/h) times faster than the traditional schemes. Note that the
acceleration factor grows as the grid gets finer (i.e., as h → 0). In the advection limit, both traditional and
hyperbolic schemes show O(N1.5) convergence in the CPU time. Results for Re = 106 show that the traditional
schemes are (2 or 3 times) faster than the hyperbolic schemes, which is expected because the hyperbolic schemes
solve two additional equations. However, it is not immediately clear if the traditional schemes are more efficient
because the third-order hyperbolic scheme is capable of delivering third-order accurate gradients. If we focus
on the accuracy in the gradients, the third-order hyperbolic scheme is to be compared with a fourth-order
scalar advection-diffusion scheme. The cost of the third-order hyperbolic scheme being comparable with that of
the second-order scheme, it implies a tremendous potential advantage of the third-order hyperbolic scheme for
applications where accurate gradients are sought. Note also that SchemeII(2nd) achieves third-order accuracy
in the advection limit with the linear LSQ gradients, not the quadratic LSQ gradients.

Table 2 shows how the number of iterations and GS sweeps vary with Re for the finest grid. For the
traditional schemes, the number of GS sweeps increases significantly as diffusion dominates, while the the
number of iterations increases as advection dominates (due to the approximate Jacobian). For the hyperbolic
schemes, the number of iterations does not vary significantly, but the number of GS sweeps increases as diffusion
dominates. If desired, it may be possible to reduce the number of GS sweeps by deriving an optimal Lr for the
numerical scheme in the diffusion limit as in Ref.2, not for the differential equations as in Refs.1, 7. Yet, we
emphasize that the hyperbolic schemes are already an order-of-magnitude more efficient than the traditional
schemes in the diffusion limit. See table 3 for the CPU time comparison for the finest grid.

V. Concluding Remarks

We have extended the diffusion schemes developed in the previous paper1 to the advection-diffusion equa-
tion, generating uniformly accurate first, second, and third order advection-diiffusion schemes on unstructured
triangular grids. The advective, diffusive, and source terms have been discretized in a unified framework by the
method of hyperbolic systems that converts the diffusive and source terms into hyperbolic systems. The devel-

9 of 17

American Institute of Aeronautics and Astronautics



To be presented at the 21st AIAA Computational Fluid Dynamics Conference in June 24, 2013.

oped hyperbolic schemes are node-centered edge-based finite-volume schemes with the upwind flux for all terms.
An implicit iterative method has been developed for all schemes based on the exact Jacobian of the first-order
scheme. Also, a two-step implementation of the quadratic LSQ gradient reconstruction has been proposed for
robustness and simplicity, in which each step is compact, requiring only the list of the edge-connected neighbors.

The developed schemes were compared with two traditional schemes: the third-order advection scheme with
the linear Galerkin diffusion scheme, and with a third-order version of the linear Galerkin diffusion scheme.16,17

It was shown analytically as well as numerically that the latter scheme cannot be third-order accurate when
advection and diffusion are equally important (Re = 1, 10, 102 in Figures 6, 7, 8) while the former is third-order
accurate only in the advection limit. Typically, the accuracy is deteriorated by one order, and in a critical case
(Re = 100), the deterioration begins to appear on fine grids. We emphasize again that the third-order Galerkin
diffusion scheme is a corrected version of the linear Galerkin diffusion scheme as described in Ref.16, not the
discontinuous Galerkin scheme nor the continuous P2 Galerkin scheme. On the other hand, the developed
schemes have been confirmed to be uniformly accurate up to the design (or higher) order accuracy for all values
of Re, i.e., Re = 10−6, 10−3, 10−2, 10−1, 1, 10, 102, 103, 106. Specifically, the first-order scheme has been shown
to yield first-order accurate solution and gradients, and second-order accurate solution in the advection limit.
The second-order scheme has been shown to yield second-order accurate solution and gradients, and third-order
accurate solution in the advection limit. The third-order scheme has been shown to yield uniformly third-order
accurate solution and gradients.

For iterative convergence, the hyperbolic schemes have been shown to bring O(1/h) acceleration in conver-
gence over traditional schemes in the diffusion limit. No such acceleration was observed in the advection limit
as expected, and the developed schemes converged somewhat slower than the traditional schemes in the test
problem considered. However, there are decisive advantages in the hyperbolic schemes, which overwhelm the
slightly slower convergence in the advection limit. First, the second-order scheme delivers third-order accurate
solutions and second-order accurate gradients with linear LSQ gradients (not with quadratic LSQ gradients).
Second, the third-order scheme produces third-order accurate gradients, which typically requires fourth-order
schemes. Also noticeable is that the first-order scheme yields second-order accurate solutions and first-order
accurate gradients in a compact stencil (no gradient reconstruction) at a fast Newton-like convergence with the
exact linearization.

A particularly important contribution of this paper is the demonstration of the simplified approach: construct
an advection-diffusion scheme as a sum of an advection scheme and a hyperbolic diffusion scheme. The approach
has been shown to work well in terms of accuracy as well as efficiency for a wide range of parameter Re
from the diffusion limit (Re = 10−6) to the advection limit (Re = 106). For the compressible Navier-Stokes
equations, it dramatically simplifies the construction of numerical schemes as a viscous scheme can be developed
independently from the inviscid scheme. As shown in Ref.8, the viscous terms can be made a hyperbolic system,
its eigen-structure can be fully analyzed, and therefore discretized easily by the upwind scheme or any other
scheme suitable for hyperbolic systems. It can then be added to any inviscid scheme to construct a hyperbolic
Navier-Stokes scheme.

Finally, we emphasize again that the core idea of the hyperbolic method lies in the construction of a first-
order hyperbolic system for target differential equations, and therefore it is generally applicable to any high-order
partial differential equation as well as any discretization method. Applications to other types of equations are
now made particularly simple as we have shown in this paper that numerical schemes can be constructed for
each non-hyperbolic term independently by turning it into a hyperbolic system. Opportunities are still wide
open.
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Figure 1. Dual control volume for the node-centered finite-volume method with scaled outward
normals associated with an edge, {j, k}.
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Scheme Discretization Jacobian

Advection Diffusion Advection Diffusion

Galerkin Third-order upwind Linear Galerkin First-order upwind Exact

Galerkin(3rd) Third-order upwind Third-order Galerkin First-order upwind Linear Galerkin

SchemeII(1st) First-order upwind Exact

SchemeII(2nd) Second-order upwind First-order upwind

SchemeII(3rd) Third-order upwind First-order upwind

Table 1. Summary of discretizations and Jacobians.

x

y

0 1
0

1

Figure 2. Irregular triangular grid with 2048 nodes.
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Figure 3. Case Re = 10−6
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Figure 4. Case Re = 10−2
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Figure 5. Case Re = 10−1
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Figure 6. Case Re = 1
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Figure 7. Case Re = 10
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Figure 8. Case Re = 102
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Figure 9. Case Re = 103
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Figure 10. Case Re = 106
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Figure 11. Case Re = 10−6
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Figure 12. Case Re = 10−2
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Figure 13. Case Re = 10−1
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Figure 14. Case Re = 1
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Figure 15. Case Re = 10
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Figure 16. Case Re = 102
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Figure 17. Case Re = 103
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Figure 18. Case Re = 106

Scheme
Re =

√
a2 + b2/ν

10−6 10−3 10−2 10−1 1 10 102 103 106

Galerkin 5(12564) 5(12564) 5(12565) 5(12567) 6(15124) 7(7292) 10(861) 23(118) 49(22)

Galerkin(3rd) 7(10987) 7(10987) 7(10989) 7(11003) 7(11018) 8(6385) 10(848) 23(119) 49(22)

SchemeII(1st) 5(324) 5(324) 5(324) 5(326) 5(343) 5(264) 5(98) 5(75) 5(78)

SchemeII(2nd) 77(58) 77(58) 77(58) 77(57) 77(52) 77(34) 78(25) 93(24) 94(42)

SchemeII(3rd) 46(151) 46(151) 46(151) 46(151) 46(146) 46(122) 58(116) 66(59) 51(56)

Table 2. Total number of iterations in the finest grid case. The number in the parenthesis is the average number of
GS-sweeps per iteration required to ensure two orders of magnitude reduction in the residual of the linear system.
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Scheme
Re =

√
a2 + b2/ν

10−6 10−3 10−2 10−1 1 10 102 103 106

Galerkin 5.0e+03 4.8e+03 4.8e+03 4.8e+03 7.0e+03 4.5e+03 8.3e+02 3.1e+02 1.4e+02

Galerkin(3rd) 5.5e+03 5.6e+03 6.5e+03 6.1e+03 5.8e+03 4.2e+03 6.4e+02 2.2e+02 1.2e+02

SchemeII(1st) 1.4e+02 1.3e+02 1.3e+02 1.3e+02 1.4e+02 1.1e+02 4.3e+01 3.9e+01 3.6e+01

SchemeII(2nd) 5.0e+02 4.7e+02 5.2e+02 4.4e+02 4.0e+02 2.9e+02 2.5e+02 2.8e+02 4.2e+02

SchemeII(3rd) 7.2e+02 7.2e+02 7.1e+02 6.4e+02 5.8e+02 5.3e+02 5.9e+02 3.9e+02 3.0e+02

Table 3. Total CPU time for convergence in the finest grid case.

Appendix: Two-Step Implementation of Quadratic LSQ Gradient Reconstruction

First, we compute and store the coefficients for the gradient once for a given grid.

1. Construct temporary data:

For each node j ∈ {J}, loop over the edge-connected neighbors k ∈ {kj} and store the edge-vector:

∆xj(k) = xk − xj , (V.1)

where ∆xj(k) = (∆xj(k),∆yj(k)), xk = (xk, yk), and xj = (xj , yj). One can skip this step if the data is
already available in a code.

2. Compute gradient coefficients:

For each node j ∈ {J} , loop over the neighbors of k, ℓ ∈ {ℓk} within the loop over the edge-connected
neighbors k ∈ {kj}:

∆x = ∆xj(k) + ∆xk(ℓ), (V.2)

and accumulate each entry of a 5×5 LSQ matrix for a quadratic fit, ALSQ. Note that ∆x = 0 if the
neighbor coincides with the node j. It is not necessary, but we reset ∆x = ∆xj(k) in that case to increase
the contribution from the edge-connected neighbors. After the loop over k ∈ {kj}, compute the inverse
of the LSQ matrix, A−1

LSQ. Next, set i = 0 and repeat the same double loop. Within the double loop,
increment i by i = i+ 1, and compute the coefficients:

cji = A−1
LSQb, (V.3)

where cji = (cxji, c
y
ji, c

xx
ji , c

xy
ji , c

yy
ji ), b = (∆x,∆y,∆x2/2,∆x∆y,∆y2/2). Save the first two components,

cxji and cyji, at the node j.

The remaining coefficients, cxxji , c
xy
ji , and cyyji , can be used to compute the second derivatives but not re-

quired in the third-order scheme. Note that the method automatically introduces slight weights based on the
connectivities, e.g., 2 if a node is processed twice, which happens for the edge-connected neighbor shared by
two adjacent elements. We point out that the only data needed are the coefficients cxji and cxji for each node,
and other data such as ∆xj and ∆yj computed at the first step as well as the LSQ matrices can be deleted at
the end of the process.

Having computed and stored the coefficients, we can perform the gradient reconstruction at every residual
evaluation in two steps. We outline the procedure for the variable p, but it is equally valid for any variable.

1. Construct temporary data: For each node j ∈ {J} , loop over the edge-connected neighbors k ∈ {kj} and
store the edge-difference of the variable for which the gradient is sought:

∆pj(k) = pk − pj . (V.4)
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2. Compute the gradient: For each node j ∈ {J} , initialize the gradient, ∇pj = 0 and the counter, i = 0,
and loop over the neighbors of k, ℓ ∈ {ℓk} within the loop over the edge-connected neighbors k ∈ {kj}.
Within the double loop, increment i by i = i+ 1 and accumulate the gradient contribution:

∇pj = ∇pj +∆p

 cxji

cyji

 , ∆p = ∆pj(k) + ∆pk(ℓ), (V.5)

or ∆p = ∆pj(k) in the case the neighbor coincides with j if the reset has been employed in the calculation
of the coefficients in Equation (V.2).
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